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1. Motivation 2. Methodology

Classical visual descriptors are well- * Edge map (Sobel) — local geometry
established, deterministic and » Colour segmentation map (soft k-means on a/b) — region-wise chroma
human-interpretable. Humans can understand * Grey-level histogram (100 bins) — global intensity
the image with incomplete visual concepts. We Deep Representation Learning N Differentiable Descriptor Extraction
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. Takeaway: Decoupled, sparse inputs act as built-in “missing information,” encouraging robust, structured
representations without patch masking.

4. \Visual Restoration

We plug VisualSplit features into Stable Diffusion 1.5 (global guidance via an |IP-Adapter-style pathway; local
guidance via a ControlNet-style pathway). Using only descriptors as conditions
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Answer: Yes. We present VisualSplit, which
reconstructs images from decoupled

descriptors to learn controllable, interpretable
representations
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3 . Re p rese ntatiO N Ana |ySiS . Takeaway: With descriptors as conditions, our guidance yields sharper, more faithful restorations with fewer
artefacts—no prompt required.

Classification. Pre-training on decoupled classical
descriptors (edges, colour segments, intensity
histogram) yields explicit, transferable features

Classification Generalisation in Accuracy (%).
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Segmentation. Transferring to ADE20K with a
lightweight SegFormer head.

Descriptors Descriptors w/o prompt w/ prompt w/o prompt w/ prompt w/o prompt w/ prompt

Original - . Ours
Transfer Learning for Classification and Segmentation. (Original) (Edited) ControlNet T21-Adapter ControlNet++
" Places dataset " ADE2OK dataset Brightness editing. Adjust the grey-level histogram to control exposure/brightness independently of geometry and
90
colour.
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. Takeaway: Descriptor-driven pretraining learns

structure- and colour-aware features that transfer well. [ Takeaway: Disentangled controls (colour map + grey-level histogram) enable precise, localised, edge-

preserving edits that are predictable and repeatable—without re-training or prompts.

Project Page: https://chenyuanqu.com/VisualSplit/ Code: https://github.com/HenryQUQ/\VisualSplit
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